Straining to see the M_2 phase in ultrathin epitaxial vanadium dioxide

L. F. J. Piper
Department of Physics, Applied Physics and Astronomy
Binghamton University

It has been more than a decade since Muroaka et. al. showed that the transition temperature of the metal insulator transition (T_{MIT}) of VO$_2$ in epitaxial thin films can be tuned by ± 50 K by applying compressive and tensile strain along the rutile c-axis,[1] but we still can’t explain why. Since this discovery, uniaxial strain studies of VO$_2$ nanobeams have demonstrated that compressive strain does indeed lower T_{MIT}, thus stabilizing the metallic rutile phase. The tensile strain case is different. Even minor tensile strain induces an additional insulating monoclinic phase, i.e. the M_2.[2] Whether the M_2 phase can be stabilized in thin films remains contentious owing to the constraints of sample and/or interface quality. Understanding how and why tensile biaxial strain induces the M_2 phase should provide insight into the mechanism dictating the T_{MIT} of VO$_2$ of thin films.

In this talk, I will present our group’s studies of ultrathin epitaxial films of VO$_2$ grown on TiO$_2$ to determine the presence and origin of the M_2 phase. From measurements at dedicated synchrotron facilities in the US and UK, we provide evidence of a tensile-strained stabilized M_2 phase. Our results reveal that the MIT is not exclusively determined by the spacing of the V-V dimers along rutile c-axis and that strain-induced variations in electron correlation effects are more likely responsible for stabilizing the M_2 phase. We acknowledge support from the National Science Foundation under grant number DMR-1409912.

Refs: