2021
2020
Rumbaugh KP, Sauer K. 2020. Biofilm dispersion . Nature Reviews Microbiology. doi:10.1038/s41579-020-0385-0.
Xiao X, Zhao W, Liang J, Sauer K, Libera M. 2020. Self-defensive antimicrobial biomaterial surfaces . Colloids and Surfaces B: Biointerfaces 192:110989.
Sauer K. 2020. Cyclic di-GMP and the regulation of biofilm dispersion , p. 545-560. In Chou S-H, Guiliani N, Lee VT, Römling U (ed.), Microbial Cyclic Di-Nucleotide
Signaling. Springer International Publishing, Cham.
Cherny, K. E., and K. Sauer. 2020. Untethering and degradation of the polysaccharide matrix are essential steps in the
dispersion response of Pseudomonas aeruginosa biofilms. Journal of Bacteriology 202:e00575-00519.
David G. Davies. Induction of a physiological dispersion response in bacterial cells in a biofilm.
Issue Date: 05/19/2020. US Patent Number: 10,653,140.
Tahernia, M., Plotkin-Kaye, E., Mohammadifar, M., Goa, Y., Oefelein, M.R., Cook, L.C.,
and S. Choi. 2020. Rapid and High-throughput Screening of Electrogenic Gut Bacteria.
Accepted. ACS Omega. 4(45):29439-29446.
Chatterjee, N., Cook, L.C.C., Van Mouwerik Lyles, K., Nguyen, H.A.T, Devlin, D., Thomas,
L.S., and Z. Eichenbaum. 2020. A novel heme transporter from the ECF family is vital for the Group A Streptococcus colonization and infections. J. Bac. doi: 10.1128/JB.00205-20.
García-Rodríguez, A., Moreno-Olivas, F., Marcos, R., Tako, E., Marques, C.N.H., and
Mahler, G.J. (2020). The Role of Metal Oxide Nanoparticles, Escherichia coli , and Lactobacillus rhamnosus on Small Intestinal Enzyme Activity . Environmental Sciences: Nano 7: 3940-3964..
Malik, M., Subedi, S., Marques, C.N.H. and Mahler, G.J. (2020). Bacteria remediate the effects of food additives on intestinal function in an in vitro
model of the gastrointestinal tract. Frontriers in Nutrition 7: 131.
Lipsky, Z.W., Marques, C.N.H. and German G. K. (2020). Lipid depletion enables permeation of Staphylococcus aureus bacteria through human substratum corneum. Tissue Barriers 8(2): 1754706.
Limage R., Tako, E., Kolba, N., Guo, Z,, García-Rodríguez, A., Marques, C.N.H., and
Mahler, G.J. (2020). TiO2 nanoparticles and commensal bacteria alter mucus layer thickness and composition
in a gastrointestinal tract model. Small 16(21): e2000601.
Cooke A.C., Florez C., Dunshee E.B., Lieber A.D., Terry M.L., Light C.J., Schertzer
J.W. (2020). PQS-induced outer membrane vesicles enhance biofilm dispersion in Pseudomonas aeruginosa . mSphere 5(6); e01109-20.
2019
LCC Cook, N Chatterjee, Y Li, J Andrade, MJ Federle, Z Eichenbaum. 2019. Transcriptomic Analysis of Streptococcus pyogenes Colonizing the Vaginal Mucosa Identifies hupY, an MtsR-Regulated Adhesin Involved
in Heme Utilization . mBio 10 (3), e00848-19.
Goodwine, J., J. Gil, A. Doiron , J. Valdes, M. Solis, A. Higa, S. Davis, and K. Sauer
. 2019. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of
antibiotics in killing biofilms in vitro and in vivo . Scientific Reports 9:3763.
Dingemans, J. R.E. Al-Feghali, G.W. Lau, and K. Sauer. 2019. Controlling chronic Pseudomonas aeruginosa infections by strategically interfering with the sensory function of SagS. Mol. Microbiol.doi: 10.1111/mmi.14215.
Woods, P.W., Haynes, Z.M. Mina, E. G., and Marques, C.N.H. 2019. Maintenance of S. aureus in co-culture with P. aeruginosa while growing as biofilms. Frontiers in Microbiology 9: 3291. doi:10.3389/fmicb.2018.03291
Marques, C.N.H. and Nelson, S.M. 2019. Pharmacodynamics of Pseudomonas aeruginosa biofilm derived cells to ciprofloxacin when monitored in real time. Letters in Applied Microbiology.doi: 10.1111/lam.13126
Cooke A.C., Nello A.V., Ernst R.K. and Schertzer J.W. (2019). Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS One14(2): e0212275. doi.org/10.1371/journal.pone.0212275
Chandler C.E., Horspool A.M., Hill P.J., Wozniak D.J., Schertzer J.W., Rasko D.A.
and Ernst R.K. (2019). Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1 . J. Bacteriology201:e00595-18. doi:10.1128/JB.00595-18.
Li A., Schertzer J.W., Yong X. 2019. Molecular conformation affects the interaction of the Pseudomonas quinolone signal
with the bacterial outer membrane. J. Biol. Chem.; p. 1089-1094.doi: 10.1074/jbc.AC118.006844
2018
Cleary, J.M., Lipsky, Z.W., Kim, M., Marques, C.N.H. and German G. K. (2018). Heterogeneous ceramide distributions alter spatially resolved growth of Staphylococcus aureus on human stratum corneum. Journal of the Royal Society Interface 15: 20170848.doi: 10.1098/rsif.2017.0848.
Poudyal, B. and K. Sauer. 2018. PA3177 encodes an active diguanylate cyclase that contributes to the biofilm antimicrobial
tolerance but not biofilm formation by P. aeruginosa . Antimicrobial Agents and Chemotherapy24;62(10). doi: 10.1128/AAC.01049-18
Dingemans J, B. Poudyal, H. Sondermann, and K. Sauer. 2018. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently
Regulate Biofilm Formation and Biofilm Drug Tolerance. mSphere 3. DOI: 10.1128/mSphere.00192-18.
Song, F., H. Wang, K. Sauer, and D. Ren. 2018. Cyclic-di-GMP and oprF are involved in the response of Pseudomonas aeruginosa to substrate material stiffness during attachment on polydimethylsiloxane (PDMS). Frontiers in Microbiology.9:110. doi: 10.3389/fmicb.2018.00110.
Esch, MB and Mahler, GJ. Chapter 11 - Body-on-a-chip systems: Design, fabrication,
and applications. In: Microfluidic Cell Culture Systems (Second Edition). Borenstein
JT, Tandon V, Tao SL, Charest JL, editors. Elsevier; 2019. p. 323-50. doi.org/10.1016/B978-0-12-813671-3.00011-6.
Pereira MT, Malik M, Nostro JA, Mahler GJ, and Musselman LP. Effect of dietary additives on intestinal permeability in vivo in Drosophila and in vitro in a human cell co-culture. Disease Models & Mechanisms; 2018: doi:10.1242/dmm.034520.
Guo Z, Martucci NJ, Liu Y, Yoo E, Tako E, Mahler GJ. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model. Nanotoxicology. 2018; 12(5): 485-508. doi: 10.1080/17435390.2018.1463407.
Richter JW, Shull GM, Fountain JH, Guo Z, Musselman LP, Fiumera AC, Mahler GJ. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture
model of the intestinal epithelium and Drosophila melanogaster . Nanotoxicology. 2018; (5):390-406. doi: 10.1080/17435390.2018.1457189.
Luo, Jing, Xiaobo Chen, Jada Crump, David G. Davies, Guangwen Zhou, Ning Zhang, and
Congrui Jin. 2018. Screening of Fungi for Self-Healing of Concrete Cracks. arXiv preprint arXiv:1708.01337.
Luo, Jing, Xiaobo Chen, Jada Crump, Hui Zhou, David G. Davies, Guangwen Zhou, Ning
Zhang, and Congrui Jin. 2018. Interactions of fungi with concrete: Significant importance for bio-based self-healing
concrete. Construction and Building Materials 164: 275-285.
Li A., Schertzer J.W., Yong X. 2018. Molecular dynamics modeling of Pseudomonas aeruginosa outer membranes. Phys Chem Chem Phys 20(36); p. 23635-23648.
Horspool A.M., Schertzer J.W. (2018). Reciprocal cross-species induction of outer membrane vesicle biogenesis via secreted
factors. Sci Rep. 8(1); 9873.
2017
Sauer, K. (Editor) 2017. C-di-GMP Signaling. Methods and Protocols. Springer.
Sauer, K. 2017. The war on slime: Why biofilms have earned their bad reputation and
how scientists plan to retaliate. Scientific American, November: 65-60.
Chambers, J.R., K.C. Cherny, and K. Sauer. 2017. Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class
of antimicrobial agent used. Antimicrobial Agents and Chemotherapy, Nov 22;61(12). pii: e00846-17. doi: 10.1128/AAC.00846-17.
Print 2017 Dec..
Chambers, J.R., and K. Sauer. 2017. Detection of Cyclic di-GMP Binding Proteins Utilizing a Biotinylated Cyclic di-GMP
Pull-Down Assay. Methods Mol. Biol. 1657:317-329.
Chambers, J.R., and K. Sauer. 2017. Detection of c-di-GMP-Responsive DNA Binding. Methods Mol. Biol. 1657:293-302.
Petrova, O.E., and K. Sauer. 2017. High-Performance Liquid Chromatography (HPLC)-Based Detection and Quantitation of
Cellular c-di-GMP. Methods Mol. Biol1657:33-43.
Song, F., M. Brasch, H. Wang, J. Henderson, K. Sauer, and D. Ren. 2017. How bacteria respond to material stiffness during attachment: a role of Escherichia coli flagellar motility. ACS Appl Mater Interfaces 9:22176-22184 .
Petrova, O.E., K. Gupta, J. Liao, J. Goodwine, and K. Sauer. 2017. Divide and conquer: The Pseudomonas aeruginosa two-component hybrid SagS enables biofilm
formation and recalcitrance of biofilm cells to antimicrobial agents via distinct
regulatory circuits. Environmental Microbiology and Environmental Microbiology Reports 19:2005-2024.
Petrova, O.E., F. Garcia-Alcalde, C. Zampaloni, and K. Sauer. 2017. Comparative evaluation of rRNA depletion procedures 1 for the improved analysis of
bacterial biofilm and mixed pathogen culture transcriptomes. Scientific Reports 7:41114 | DOI: 10.1038/srep41114. http://rdcu.be/oKR4.
2016
Sauer, K. 2016. Unlocking the secrets of bacterial biofilms – to use against them.
Conversation US. http://theconversation.com/unlocking-the-secrets-of-bacterial-biofilms-to-use-against-them-59148 .
Petrova, O. E., and Sauer, K. 2016. Escaping the biofilm in more than one way: Desorption,
detachment or dispersion. Current Opinion in Microbiology. 30:67–78.
Mina, E.G. and Marques, C.N.H. 2016. Interaction of Staphylococcus aureus persister cells with the host previous to- and during awakening. Scientific Reports
6: 31342.
Lu L., Doak W.J., Schertzer J.W., Chiarot P.R. 2016. Membrane Mechanical Properties
of Synthetic Asymmetric Phospholipid Vesicles. Soft Matter 12(36). p. 7521-7528.
DOI: 10.1039/c6sm01349j.
2015
Lanter, B. B., and D. G. Davies. 2015. Propionibacterium acnes recovered from atherosclerotic human carotid arteries undergoes biofilm dispersion
and releases lipolytic and proteolytic enzymes in response to norepinephrine challenge
in vitro. Infection and immunity (2015): IAI-00510.
Marques CN, Davies DG, Sauer K. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid. Pharmaceuticals (Basel). 2015 Nov 25;8(4):816-35.
Marques CN, Craver SA. Quantification of Respiratory Activity in Biofilms. Bio-protocol.
2015 September 20; 5(18):e1591.
Marques CN. Isolation of Persister Cells from Biofilm and Planktonic Populations of
Pseudomonas aeruginosa. Bio-protocol. 2015 September 20; 5(18):e1590.
Pardo YA, Florez C, Baker KM, Schertzer JW, Mahler GJ. Detection of outer membrane
vesicles in Synechocystis PCC 6803.FEMS microbiology letters. 2015; 362(20).
Lu L, Schertzer JW, Chiarot PR. Continuous microfluidic fabrication of synthetic asymmetric vesicles. Lab on a chip. 2015; 15(17):3591-9.
Lu L, Irwin RM, Coloma M, Schertzer JW, Chiarot PR.Removal of Excess Interfacial Material
from Surface-modified Emulsions Using a Microfluidic Device with Triangular Post Geometry. Microfluid
Nanofluidics. 2015 May; 18(5-6):1233-1246.
Vella BD, Schertzer JW. Ramos JL, Goldberg JB, Alain F, editors. New York: Springer. Pseudomonas
Vol. VII, Chapter 9, Understanding and Exploiting Bacterial Outer Membrane Vesicles;
p.217 - 250. 316p.
Richter J, Shull G, and Mahler GJ. TiO2 nanoparticle ingestion alters glucose absorption
in an in vitro model of the intestinal epithelium. 41st Annual Northeast Bioengineering Conference (NEBEC). In press.
2014
Petrova, O.E., K.E. Cherny, and K. Sauer. 2014. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. Bacteriol. 197(1):174-87.
Basu Roy, Ankita, and K. Sauer. 2014. Diguanylate cyclase NicD based signaling mechanism of nutrient-induced dispersion
by Pseudomonas aeruginosa. Mol Microbiol. 94(4):771-93
Petrova, O.E., K.E. Cherny, and K. Sauer. 2014. The aeruginosa diguanylate cyclase GcbA, a homolog of the P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation
of motility . J. Bacteriol. Published ahead of print 2 June 2014, doi: 10.1128/JB.01628-14.
Lantern, B., K. Sauer, D.G. Davies. 2014. Bacteria present in carotid arterial plaques are found as biofilm deposits which may
contribute to enhanced risk of plaque rupture . mBio 5: 01206-01214.
Marques CN, Morozov A, Planzos P, Zelaya HM. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity
and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol. 2014 Nov;80(22):6976-91.
Last Updated: 8/27/24